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What is a Composite 

Smart Client?
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Technology
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Dependency Injection

The "old way":

Components have

intimate knowledge

of services

public class Component

{

private Service svc = new Service();

}

Component

Service
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Dependency Injection

In the right direction:

Component uses

services by interfaces

and factories

public class Component

{

private IService svc = ServiceFactory.GetService();

}

Component

Service

IService
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Dependency Injection

The "CAB way":

Dependencies are

injected at runtime

instead of compile time

public class Component

{

[ServiceDependency]

private IService svc;

}
Container

Component

Service

IService
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Demo

Dependency Injection
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Event Broker

The "old way":

Events are wired up

at compile time

public class Sender {

public event EventHandler evt;

}

public class Listener {

mySender.evt += new EventHandler(myHandler);

}

Listener

Sender
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Event Broker

The "CAB way":

Events are wired up

at runtime

public class Sender {

[EventPublication("topic://Sender/event1")]

public event EventHandler evt;

}

public class Listener {

[EventSubscription("topic://Sender/event1")]

private void MyHandler(object sender, EventArgs e)

}

Container

Listener Sender
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Event Broker

Multiple subscribers

Sender

Listener 2

Listener 1
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Event Broker

Multiple publishers

Against multiple subscribers, too

Sender 1

Sender 2

Listener 1

topic://sender/event

topic://sender/event

Listener 2



July 24, 2005 Portland Code Camp 1.0

Demo

Event Broker
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Command Dispatching

 De-couples UI elements from command 

handlers

 Architecture similar to Event Broker
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Demo

Command Dispatching
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Modules

 Isolated, reusable functionality

 Loosely coupled teams

 Role-based modules

Application

Shell

Module

Module

Module
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Demo

Modules
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CAB Application Architecture
Application Host

Shell

Module A

Services

Monitors

WorkItem A

Services Monitors

Controller A

View A

Controller B

View B

State

Module B

WorkItem C

Services Monitors State

Controller A

View A

Controller B

View B



July 24, 2005 Portland Code Camp 1.0

CAB Architecture

Component Model

Composite UI

Composite UI

(WinForms)
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CAB Architecture

Component Model

Composite UI

Composite UI

(WinForms)

Composite UI

(Avalon)

Composite UI

(3rd party)
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Views & Controllers

 Views present model data to the user

 Controllers contain the business logic

 Automatically wired up by the container

 A view has one and only one controller

 A controller may control many views
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Work Item

 Represents a use case in the system

 Specialized container for

Model Data

 Views

 Controllers

Workspaces

 Services

 Key point of reusability

Model

Model

Model

View Ctrlr

Svc
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Workspaces

 Workspaces are canvases onto which you 
can paint your views

 For Windows Forms, we ship:

WindowWorkspace

MdiWorkspace

ZoneWorkspace

TabWorkspace

DeckWorkspace
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Demo

Bank Teller QuickStart
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Q & A


