
July 24, 2005 Portland Code Camp 1.0

Composite UI 

Application Block

Brad Wilson

Microsoft patterns & practices

bradwils@microsoft.com

http://msdn.microsoft.com/practices/

http://bradwilson.typepad.com/



July 24, 2005 Portland Code Camp 1.0

What is a Composite 

Smart Client?



July 24, 2005 Portland Code Camp 1.0



July 24, 2005 Portland Code Camp 1.0

Technology



July 24, 2005 Portland Code Camp 1.0

Dependency Injection

The "old way":

Components have

intimate knowledge

of services

public class Component

{

private Service svc = new Service();

}

Component

Service



July 24, 2005 Portland Code Camp 1.0

Dependency Injection

In the right direction:

Component uses

services by interfaces

and factories

public class Component

{

private IService svc = ServiceFactory.GetService();

}

Component

Service

IService



July 24, 2005 Portland Code Camp 1.0

Dependency Injection

The "CAB way":

Dependencies are

injected at runtime

instead of compile time

public class Component

{

[ServiceDependency]

private IService svc;

}
Container

Component

Service

IService



July 24, 2005 Portland Code Camp 1.0

Demo

Dependency Injection



July 24, 2005 Portland Code Camp 1.0

Event Broker

The "old way":

Events are wired up

at compile time

public class Sender {

public event EventHandler evt;

}

public class Listener {

mySender.evt += new EventHandler(myHandler);

}

Listener

Sender



July 24, 2005 Portland Code Camp 1.0

Event Broker

The "CAB way":

Events are wired up

at runtime

public class Sender {

[EventPublication("topic://Sender/event1")]

public event EventHandler evt;

}

public class Listener {

[EventSubscription("topic://Sender/event1")]

private void MyHandler(object sender, EventArgs e)

}

Container

Listener Sender



July 24, 2005 Portland Code Camp 1.0

Event Broker

Multiple subscribers

Sender

Listener 2

Listener 1



July 24, 2005 Portland Code Camp 1.0

Event Broker

Multiple publishers

Against multiple subscribers, too

Sender 1

Sender 2

Listener 1

topic://sender/event

topic://sender/event

Listener 2



July 24, 2005 Portland Code Camp 1.0

Demo

Event Broker



July 24, 2005 Portland Code Camp 1.0

Command Dispatching

 De-couples UI elements from command 

handlers

 Architecture similar to Event Broker



July 24, 2005 Portland Code Camp 1.0

Demo

Command Dispatching



July 24, 2005 Portland Code Camp 1.0

Modules

 Isolated, reusable functionality

 Loosely coupled teams

 Role-based modules

Application

Shell

Module

Module

Module



July 24, 2005 Portland Code Camp 1.0

Demo

Modules



July 24, 2005 Portland Code Camp 1.0

CAB Application Architecture
Application Host

Shell

Module A

Services

Monitors

WorkItem A

Services Monitors

Controller A

View A

Controller B

View B

State

Module B

WorkItem C

Services Monitors State

Controller A

View A

Controller B

View B



July 24, 2005 Portland Code Camp 1.0

CAB Architecture

Component Model

Composite UI

Composite UI

(WinForms)



July 24, 2005 Portland Code Camp 1.0

CAB Architecture

Component Model

Composite UI

Composite UI

(WinForms)

Composite UI

(Avalon)

Composite UI

(3rd party)



July 24, 2005 Portland Code Camp 1.0

Views & Controllers

 Views present model data to the user

 Controllers contain the business logic

 Automatically wired up by the container

 A view has one and only one controller

 A controller may control many views



July 24, 2005 Portland Code Camp 1.0

Work Item

 Represents a use case in the system

 Specialized container for

Model Data

 Views

 Controllers

Workspaces

 Services

 Key point of reusability

Model

Model

Model

View Ctrlr

Svc



July 24, 2005 Portland Code Camp 1.0

Workspaces

 Workspaces are canvases onto which you 
can paint your views

 For Windows Forms, we ship:

WindowWorkspace

MdiWorkspace

ZoneWorkspace

TabWorkspace

DeckWorkspace



July 24, 2005 Portland Code Camp 1.0

Demo

Bank Teller QuickStart



July 24, 2005 Portland Code Camp 1.0

Q & A


